
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 449-454

DYNAMIC METRICS AT DESIGN LEVEL

Payal Khurana & Puneet Jai Kaur

As object oriented analysis and design techniques become widely used, the demand on assessing the quality of object-
oriented designs substantially increases. Recently, there has been much research effort to develop and empirically validate
metrics for OO design quality. Complexity, Coupling and Cohesion have received a considerable interest in the field. Despite
the rich body of research and practice in developing design quality metrics, there has been less emphasis on dynamic metrics
for object-oriented designs. The complex dynamic behavior of many real-time applications motivates a shift in interest from
traditional static metric to dynamic metrics.

In this research, Improved Dynamic cohesion metric is proposed. Existing cohesion measures only consider the pattern of
interactions but do not differentiate write interaction from read interaction. Thus, do not reflect properties of class. This
research measures improved version of cohesion measures considering read and write interaction as well as dynamic
environment. This cohesion measures will be evaluated against some open source code of Java and to prove that write interaction
are so commonly used in classes that they have much influence on cohesion measures and also cohesion measured dynamically
is better than measured statically.

Keywords: Dynamic Measurement, Cohesion, Interaction Patterns, Read/Write Interactions, AOP.

1. INTRODUCTION

Recent years have seen the increasing use of object oriented
paradigm in software development. The use of object-
oriented software development technique introduces new
elements to software complexity both in software
development process and in the final product.

Software metrics measure different aspects of software
complexity and therefore play an important role in analyzing
and improving software quality [10, 13]. They provide useful
information on external quality aspects of software such as
maintainability, reusability, and reliability, and provide a
means of estimating the effort needed for testing.

Traditional metrics for measuring software such as
Lines of Code (LoC) have been found to be inadequate for
analysis of object-Oriented software [9]. In recent years
many researchers and practitioners have proposed a number
of static code metrics for object-oriented software, e.g the
suite of metrics proposed by Chidamber and Kemerer [16,
17]. These code metrics quantify different aspects of
complexity of the source code. However the ability of such
static metrics to accurately predict the dynamic behavior of
an application is as yet unproven.

Static metrics alone may be insufficient in evaluating
the dynamic behavior of an application at run time, as its
behavior will be influenced by the operational environment
as well as complexity of object-oriented software.

Cohesion refers to the relatedness of the elements in a
module. A highly cohesive module is one whose elements
have tight relationship among them in order to provide a
single functionality of the module. On the contrary, a low
cohesive module has some elements that little relation with
others, which indicates that the module may contain several
unrelated functionalities. It is widely accepted that higher
the cohesion of a module is, the easier the module is to
develop, maintain and reuse.

In the object oriented paradigm, various cohesion
measures for [4, 11, 14, 15, 16, 17, 18] classes have been
proposed. In the beginning of research on cohesion measures
for classes, researchers just considered syntactic relationship
between class members such as interaction between class
members such as interactions between instance variables
and methods. However more recent researches have been
tried to identify inherent characteristics of classes which
can affect the cohesiveness of classes and incorporate them
into cohesion metrics.

Chae et.al [4] introduced the notion of special methods.
They noted that special methods have no influence on class
cohesion because those methods are designed to show a
specific behavior, interacting inherently with only some of
instance variables for the specific purposes. They attempted
to enhance the existing cohesion measures by including the
implicit and hidden interactions between class members due
to data dependency [5].

 Gyun woo et.al. [1] proposed an approach to
enhancing the existing cohesion measures by considering
type of interaction between method and instance variable.

* Department of Information Technology, Panjab University,
Chandigarh, INDIA.
E-mail: payal_f12@yahoo.co.in, puneetkaur79@yahoo.co.in

��� ������	
�����������������	���

COM6\D:\HARESH\11-JITKM

interactions into cohesion measures. Basically weights are
assigned to every edge of the member interaction graph of
a class then weights of method pairs are derived from these
edge weights.

V(c)- Total number of variables in a class C.

M(c) - Total number of methods in a class C.

M
R
(v) - Set of methods of class C that directly read v.

M
W
(v) - Set of methods of class C that directly write v.

M
U
(v) - Set of methods of class C that directly read or

write v.

M
R
(v) U M

W
(v) = M

U
(v)

M
R
(v) = {m ª M(c)| v ª V

R
(m)}

M
W
(v) = {m ª M(c)| v ª V

W
(m)}

M
U
(v) = {m ª M(c)| v ª V

U
(m)}

1. Absolute Coherency Weight:

Absolute coherency weight between method m(m ª M(c))
and variable v ª V(c) is given as

{ } �

� �

�

1 () if ()

(,) 1 if () & ()

0 if ()

R W

MVabs R W

U

M v m m M v

W m v m M v m mM v

m M v

+ −

=

For a class C It is maximum possible coherency weight
of W

MVabs
 provided that the set of variables & set of methods

are not changed.

max

() when we consider the impact of
 write interactions

1 otherwise

M c
W =

3. Coherency Weight between m and v, W
MV

(m, v)

For a method mªM(c) and an instance variable vªV(c)
Coherency weight is given as

W
MV

(m, v) = W
MVabs

(m, v) / W
max

(c)

4. Absolute Coherency Weight between Method Pairs
mi and mj W

MMabs

0 if () ()=
(,)

()) otherwise

U i U j
MMabs i j

com i j

V m V m
W m m

max(W m ,m

Φ
=

�

Where W
com

(M) = (W
MVabs

(m, v)| mªM, vª�V
U
(m) where

mªM(c))

5. Coherency Weight between Method Pairs m
i
 and m

j
,

W
MM

W
MM

(m
i
, m

j
) = W

MMabs
(m

i
, m

j
) / W

max
(C)

The interaction between method and instance variable can
be classified into two categories read interactions and write
interactions. Write interaction is considered stronger than
read interaction because the write interaction can affect other
methods that read the instance variable written. These
interactions are given weights. More weight is given to read
interaction. Using these weights cohesion measures are
revised.

Still, these revised cohesion measures are static
cohesion measures. In this research paper these revised
measures are made dynamic for the some student Java
programs and compared with static ones.

Java is general-purpose object-oriented programming
language [12] developed by Sun Microsystems. As it is being
increasingly used as a development language for new
software products, it is important to have a means of
evaluating the quality of such products.

2. RELATED WORK

Briand et. al. [8] carried out an extensive survey of current
available cohesion literature in object-oriented systems and
concluded that all the current metrics measured cohesion at
class level (static analysis). No measures of the object level
cohesion had been proposed (Dynamic analysis). They
suggested that the reason for this obstacle of determining
the degree of cohesion within individual objects. They
proposed that a way of evaluating these would be to find
some method of instrumenting the source code to log all
occurrences of object instantiations, deletions, method
invocations, and direct reference to attributes while the
system is executing even though no methods of measuring
cohesion at runtime for object-oriented system has been
proposed, a number of researchers were found to be
investigating applying at other stages of the software life-
cycle [6].

Gupta conducted a study and Rao comparing a program
execution based approach of measuring the levels of module
cohesion present in legacy software, with a static based
method [3]. The results from this study showed that static
based approach significantly overestimated the level of
cohesion present in the software tested, indicating that a
dynamic measurement would prove useful.

Power et. al. [2] measured new dynamic class level
cohesion metrics suitable for the run-time evaluation of a
program. These dynamic cohesion metrics are then applied
to assess the quality of java programs from the java Grande
Forum Benchmark Suite and the SPECjvm98 Benchmarks.
They to see if the results bear any relation to those obtained
from static analysis also did an investigation.

3. DYNAMIC COHESION METRICS

Basic Definitions: Here are some basic definitions of
coherency weights to incorporate the impact of write

����������������������������� ���

COM6\D:\HARESH\11-JITKM

3.1 Dynamic Revised Cohesion Measures:

a) LCOM1
w
(c):

Since LCOM1 counts the number of unrelated pairs of
methods, so LCOM1 can be computed by subtracting the
number of related pairs of methods from the whole number
of distinct method pairs. In order to improve LCOM1,
Coherency weight of a method pair is considered to
determine its relatedness. As a result less value is subtracted
for less related pairs from total number of related pairs..
Revised version of LCOM1 is

LCOM1
w
(C) = |Mp(C)| – ΣW

MM
(m

i
, m

j
)

(m
i
, m

j
)ª Mp(C)

b) LCOM2
w
(c)

In the original LCOM2, number of related pairs of methods
are subtracted from the number of unrelated method pairs.
Revised version of LCOM2 is.

�

() 2 (,)

2 () (,) () if

0 otherwise

MM i j

w i j

Mp c X W m m

LCOM c m m Mp c P Q

− Σ

= >

where |P| is number of unrelated method pairs and |Q| is
number of related method pairs. For the case |P| > |Q |.

c) TCC
w
(C)

The original TCC considers the two methods are related if
the share some common instance variable in use. The revised
version of TCC is defined as the ratio of the sum of the
coherency weight of every pairs of methods to the number
of method pairs.

�

2 (,)

() (,) ()

() () 1

MM i j

w i j

X W m m

TCC C m m Mp c

M c M c

Σ

=
× −

4. PROFILER IMPLEMENTATION

One way to collect the read write interactions of methods
with variable is to intercept the joint points, well defined
point in the program, where the variables of the class are
read or write by the method on invocation.

A trivial implementation of the idea finding read write
interactions is to insert intercepting code at the appropriate
places in the program. Modifying existing code implies extra
costs of testing and maintenance. To avoid this, new AOP
(Aspect Oriented Programming) techniques are used. The
interceptive code is developed as an interdependent
programming unit and merged it with the target program
using a weaving tool. In AOP [19, 20], intercepting code
constitutes an aspect or concern whose code crosscuts that
of the system’s core concerns. For our programs in Java,
we used Aspect J to implement intercepting code and then
insert it at appropriate joint points. Aspect J is an extension
of java with new language constructs such as pointcuts,
advices and aspects that allow the separation of aspects from
core concerns.

The interceptive code consists of four pointcuts. These
pointcuts intercepts the objects which are instantiated,
methods which are executed and the variables which are
referenced and written. Figure 1 shows snapshots of the
output of a student program while program is in running
state. It shows the line number, class whose object is
instantiated, method called and fields which are referenced
or written.

Figure 1: Snapshots of Dynamic Analysis of a Java Program

��� ������	
�����������������	���

COM6\D:\HARESH\11-JITKM

5. STATIC ANALYSIS

Here are interaction patterns formed, for sample program,
from the data collected (read/write interactions) from the
dynamic analysis of the java programs. From these
interaction patterns weights are calculated which are used
to find the revised cohesion measures.

5.1 Interaction Patterns (Dynamically)

Statically, in the interaction pattern, all the cases or
conditions are considered collectively whereas dynamically
interaction patterns are made case by case basis depending
upon the input given by the user at run time.

Figure 2: a) Interaction Pattern
b) Absolute Coherency Weight between Method & Variable

a) b) W
MVabs

Figure 2: c) Absolute Coherency Weight between Method Pairs
d) Coherency Weight between Method Pairs

Figure 3: Absolute Coherency Weight between Method Pairs

6. EMPIRICAL VALIDATION

For empirical validation five student java programs are taken
as Input. Read/Write interactions are found from the
dynamic analysis of the programs which are used in the
interaction patterns to find weights and finally, the revised
cohesion measures LCOM1

w
(C), LCOM2

w
(C) and TCC

w
(C).

LCOM1w(C):

Table 1

Programs Dynamically Statically

P1 3.7 3.7
P2 7.5 5
P3 9.1 8.2
P4 14.5 13.2
P5 19 14.7

Figure 5: Comparison of Dynamic and Static LCOM2
w
(C)

Cohesion Measure (LCOM2
w
(C))

Programs

Figure 4: Comparison of Dynamic and Static LCOM1
w
(C)

Cohesion Measure (LCOM1
w
(C))

Programs

LCOM2w(C):

Table 2

Programs Dynamically Statically

P1 1.5 1.5
P2 5 0
P3 8.2 6.4
P4 14.1 11.3
P5 17 8.4

TCCw(C):

Table 3

Programs Dynamically Statically

P1 0.4 0.4
P2 0.2 0.5
P3 0.1 0.2
P4 0.03 0.1
P5 0.1 0.3

����������������������������� ���

COM6\D:\HARESH\11-JITKM

6.2 Analysis of Results:

Results shows that, For LCOM1w(c) & LCOM2w(c)
dynamic values are more than static values but for
LCOM3w(c) dynamic values are less than static values
because cohesion values are scaled by total number of edges
in the interaction pattern due to method-method interaction.

Above comparison reveals that cohesion measured
dynamically can also be equal to static value. Static values
can be zero also as shown by LCOM2w(c) i.e lack of
cohesion is zero. Graphically dynamic curve lies above the
static curve. So it is concluded from the values programs
are less cohesive when these values are measured
dynamically and more cohesive when measured statically.

7. CONCLUSION AND FUTURE SCOPE

In this paper, we presented the comparative analysis of
dynamic cohesion metric (revised) and static cohesion
metric. To perform the analysis first of all dynamic analysis
of the Java programs is done using language AspectJ. The
output of dynamic analysis, Read/Write interactions is used
to form the interaction patterns. These Read/Write
interactions are given weights and using these weights
revised cohesion measures LCOM1w(C), LCOM2w(C) &
TCCw(C) are found both dynamically & statically.

Above results shows that dynamic cohesion values are
greater than static cohesion values. So it shows that program
is less cohesive when cohesion is measured dynamically
rather than statically.

Dynamic cohesion values depends upon the input
values provided to the program because depending upon
input values corresponding methods are called so the
corresponding method-variable interaction & method-
method interaction values are used in cohesion measure.
Dynamic cohesion values can be equal to the static cohesion
values but can not be less than static values.

As a future work, this work can be extended for the
other cohesion measures also. Revised coupling metrics can
also be found based on the Read/Write interactions and these
coupling metrics can also be made dynamic. Relationship
between the revised cohesion measures and other quality
attributes such as fault proneness can also be explored.

REFERENCES

[1] Gyun Woo, Heung Seok Chae, Jian Feng Cui, Jeong-Hoon
Ji, Revising Cohesion Measures by Considering the Impact
of Write Interactions between Class Members, Science
Direct, Journal of Information and Software Technology
(2008).

[2] Mitchell, A. and Power, J. F., Towards a Definition of Run-
Time Object-Oriented Metrics” Proceedings of the 7th

ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE’ 2003),
Darmstadt, Germany, (2003).

[3] Gupta, N. and Rao, P. “Program Execution Based Module
Cohesion Measurement,”16th International Conference on
Automated on Software Engineering (ASE ’01), Saniego,
USA, (2001).

[4] H. S. Chae, Y. R. Kwon, D. H. Bae, A Cohesion Measure
for Object-Oriented Classes, Software Practice and
Experience 30(12) (2000) 1405–1431.

[5] H. S. Chae, Y. R. Kwon, D. H. Bae, Improving Cohesion
Metrics for Classes by Considering Dependent Instance
Variables, IEEE Transactions on Software Engineering
30(11) (2004) 826–832.

[6] Cleland–Hunang J., Chang C. K., Kim H. and Balakrishnan
A. “A Requirements–Based Dynamic Metric in Object–
Oriented Systems” IEEE Proceedings on 5th International
Symposium on Requirements Engineering, (2001) 212–219.

[7] Bansiya J., Etzkorn L., Davis C. and Li W.: “A Class
Cohesion Metric for Object-Oriented Designs”, The Journal
of Object-Oriented Programming, 11(8) (1999) 47-52.

[8] Briand, L. C., Daly, J. W. and Wust, J. K., “A Unified
Framework for Cohesion Measurement in Object-Oriented
Systems,” Empirical Software Eng. : An Int’l J., 3(1) (1998)
65–117.

[9] Fenton, N. E. and Neil M., “Software Metrics: Successes
Failures and New Directions,” The Journal of Systems and
Software, 47 (1999) 149–157.

[10] L. C. Briand, J. W. Daly, J. Wüst, A Unified Framework for
Cohesion Measurement in Object-Oriented Systems,
Empirical Software Engineering 3(1) (1998) 65–117.

[11] Wei Li Another Metric Suite for Object-Oriented
Programming. The Journal of Systems and Software, (1998).

[12] Java 2 Platform, available at Sun Microsystems: http://
www.java.sun.com.

[13] Basili, V. R., Briand, L. C. and Melo W. L., “A Validation
of Object-Oriented Design Metrics as Quality Indicators,”
IEEE Transactions on Software Engineering, 22(10) (1996)
751–761.

[14] Bieman J. M., Kang B. K. Cohesion and Reuse in an Object-
Oriented System. Proceedings of ACM Symposium on
Software Reusability, (1995) 259–262.

[15] Hitz M., Montazeri B. Measuring Coupling and Cohesion
in Object-Oriented Systems. Proceedings of International
Symposium on Applied Corporate Computing, (1995).

[16] Chidamber, Shyam R. and Kemerer, Chris F., “A Metrics
Suite for Object Oriented Design”, IEEE Transactions on
Software Engineering , 20(6) (1994).

Figure 6: Comparison of Dynamic and Static TCC
w
(C)

Cohesion Measure (TCC
w
(C))

Programs

��� ������	
�����������������	���

COM6\D:\HARESH\11-JITKM

[17] Chidamber, S. R. and Kemerer, C. F., “Towards a Metrics
Suite for Object-Oriented Design,” Proc. Conference on
Object-Oriented Programming: Systems, Languages and
Applications, (OOPSLA’91), SIGPLAN Notices, 26(11)
(1991) 197–211.

[18] H. Sellers, Software Metrics, Prentice-Hall (1996).

[19] AspectJ Home Page at: http://www.eclipse.org/aspectJ/.

[20] Aspect Oriented Software Development (AOSD) Research
Projects Located at: http://www.aosd.net/technology/
research.php.

